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Hardware vs. Software 
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• In the beginning, there was only routing „in software“ – matched required/available 
transport link speeds

• Some years later, CPUs simply weren‘t fast enough anymore to „push packets“ 
reasonably

• Hardware routing with special chipsets was thus the only option for service providers

- Quite some rounds of development for routing chipsets over time

- Vendor specific chipsets vs. commercial, off-the-shelf (COTS) chipsets

- Always a trade between price and performance

• This has changed recently: today‘s CPUs are powerful enough again for commonly used 
interface speeds

• „High-enough-speed“ network interface cards are available for x86-based servers

• Not everyone anymore also needs the biggest available interfaces in a router (40/100G ?)

Why Software Routers ?
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• Hardware routers are special gear, and thus somewhat inflexible in their applicability

• Today‘s hardware routing chipsets might be „too big“ already for standard enterprise
routing (=Internet-routing only, low number of 10G interfaces and some level of BGP)

• Hardware routers do have a bit of cost

• You either need stock, or there might be delivery times

• Can a network operator gain more flexibility and save on costs at the same time by going
software-only ?

Why Software Routers ? (cont‘d)
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Hardware vs. Software 
Routers

Hardware Routers
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• One control card, and only one single line card

• Control card: runs protocols, keeps lists, tables, state, etc.

• Line card: does all packet processing - lookups, filtering, queueing, forwarding,...

• All traffic stays local within the single line card once it has passed through the ports 
facing the external world

Hardware router flavours: a very simple, fabric-less design
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• One control card, and two line cards

• Traffic must have a sufficient bandwidth path between both line cards – basically 100% 
of the front port speed as worst-case scenario

Hardware router flavours: back-to-back line card design
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• One control card, and many line cards

• Traffic must have a sufficient bandwidth path between any two line cards

• You need a lossless, any-to-any cross-connect as your switch fabric

Hardware router flavours: full fabric design
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Hardware vs. Software 
Routers
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• Take a standard OS, and build some routing software on top of it

- Start with the hardware you have

- Install the OS of your choice

- Create/find suitable routing software that runs on this OS, and does all the protocols you need

- Your OS will automatically provide the data plane for your software router

• Take existing routing software of a hardware router, and port it onto standard hardware

- Start with the software you already have: ideally already well-proven and hardened

- Find ways to make it run on standard hardware instead of special hardware

- See what OS you have to put in between, if applicable

- Find a way to „provide“ the hardware router‘s data plane (i.e. hardware chipset) as well...

From hardware to software: two approaches
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• Nice, easy, and cheap

• Usually little to no hardware dependencies

• Performance depends on your OS, and it‘s integrated network stack

• Bear in mind your OS might never have been optimized for packet throughput

• With some tweaks, you might be able to improve the situation here

• Is your OS a real-time OS – do you need things to happen at exact intervals (e.g. BFD) ?

• How do you configure this software router – config files and reboot, or well-known CLI ?

• How does it integrate into your NMS/OSS landscape ?

• Is there support for this setup, do you need it, or can you provide it yourself ?

Option one: standard OS and routing software on top
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• Effort depends on how that routing software was designed originally

- If it‘s x86-based anyway, should be limited effort

- If it‘s originally for other CPU flavours, can it be ported ?

• Have the routing software see your server „as close to the real hardware“ as possible

• Where special hardware/chipset functionality is expected, emulate it

• Make sure there is no „stolen CPU cycles“ and the like (real-time behaviour...)

• Apply whatever tricks are necessary to get maximum throughput

• Use your well-known CLI: same look&feel as regular hardware router

• Supported product: your vendor should be able to help you if required

• There will very likely be a cost with this approach

Option two: port routing software from hardware router
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• Best possible hardware abstraction: use as a VM on a hypervisor host

• Configure your VM to look as close as possible to what the routing software expects as
underlying hardware - use the hypervisor as a hardware abstraction layer

• Emulate missing hardware in software where required (slow !)

• Have your VM run a different base OS than your hypervisor

• Hypervisor OS and services do not need to be exposed into router data plane (security !)

• However: emulation and abstraction inherently cost performance again...

• Alternative: have the hypervisor „interfere the least possible way“ for critical items

• Especially try to avoid the hypervisor‘s network stack

• But then, you might have a hardware dependency again...

� There is no free lunch here either !

Option two: hardware router OS - virtualize it !
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• One control card, and only one single line card

• Option one: each of them runs as a separate VM on a common hypervisor

• Option two: have one single, shared VM for both functions

• Control bus needs limited bandwidth only

• All traffic stays local within the single line card VM

Software router virtualized: a very simple, fabric-less design
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In reality, multi-line card software routers quickly come to their limits:

• Any line card VM needs to be able to send worst case up to 100% of the front ports 
capacity to another line card VM

• Even in a two line card system, you need the same additional port capacity for the line 
card interconnect as you have on the front ports

• But then, why don‘t you use just ONE line card VM, and ALL available ports „front only“ ?

• „More than two line card systems“ scale even worse in software:

- You need to emulate the cross-bar switch fabric

- Either by single point-to-point links � expensive, doesn‘t scale (see above)

- Or by a real hardware switch as a fabric emulation

- But then again, didn‘t you originally want a software router WITHOUT any special hardware...?

Software router virtualized: more than one line card VM ?
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• Remember there was a reason for creating special routing hardware:

- Highly optimized, built-for-purpose chipsets

- Special memory types (e.g. TCAM) exist in hardware for a reason – emulation is slow

- Hardware processing is usually faster than software processing

- Hardware processing is (should be...) load-independent

- Assume that where things can be parallelized in hardware, they likely already are

• On a software router, EVERYTHING you do with a packet needs CPU cycles

• The more processing you do on a packet, the more CPU power you need (access lists, 
Multicast replication,...)

• CPU load goes up with overall throughput

Software routers: how far can you go ?
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• You need to get packets in and out of your box as well before you can do anything else

• Your server host only has a limited number of PCI slots

• The NICs you can buy have a limited number of ports

• This puts an upper limit to the number of physical ports you can attach to your software 
router

• If you use external „fan-out switches“, you have special hardware again...

• How fast can you get packets in and out of your line card VM, using all possible tricks ?

Software routers: how far can you go ? (cont‘d)
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• Native device drivers in the guest OS

• VMM emulates physical hardware

• VMM needs to intercept all traffic and convert it 
for the physical hardware

• Very slow operation

• Hardware can be shared between VMs

• Doesn’t require the guest to have knowledge of 
the fact that it’s virtualised

Virtualised I/O: emulated NICs
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• Para-Virtualised I/O driver

- The VM is aware of the fact that it is running in an 
emulated/virtualised environment

• Requires modifications to the drivers in both 
the guest and the host

• Removes the requirement for the hypervisor to 
have to emulate the hardware

• Guest OS must load the VirtIO driver 

• Provides significantly better performance 
than emulated hardware (HVM)

Virtualised I/O: VirtIO NICs
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• Linux Bridging

- Most simple option, available everywhere by default

- Slowest option of all

• Openvswitch (OVS)

- Flexible, programmable

• OVS with DPDK

- High throughput with flexibility

• SR-IOV

- Virtual Functions created in hardware to share ports

- Highest throughput with some flexibility

• PCI-Passthrough

- Highest throughput with most flexibility on the 
virtual router side, but almost no virtualization stack 
flexibility on the host side

Software routers: virtualised I/O options
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• Standard service available within Linux

• Works within a single physical machine

• The bridge appears like any other Linux 
Interface

• Multiple virtual and physical interfaces 
can be connected to it

• Commonly used for the control-
interconnects on the VSR within the same 
physical machine or to share interfaces 
where performance is less important

Virtualised I/O: Linux bridging
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• If no intelligence provided by the NIC a 
software switch is required in the VMM (VM 
Manager)

• vSwitch examines each packet and identifies 
the destination based on the mac address

• vSwitch then directs the packet to the VM

• Inefficient as the hypervisor needs to read, 
understand and deal with each packet

• Ideally: a single CPU core assigned to deal 
with the vSwitch

• Interrupts fired for: Packet arriving on NIC, 
packet being handled by vSwitch, VM dealing 
with packet

Virtualised I/O: vSwitch
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• Hypervisor connects guest vNIC port to a port of the vSwitch

- The guest uses a virtualization driver (VirtIO, E1000, VMXNET) for the vNIC
port

- Host implements the other side of the driver in user-space or kernel

• Throughput performance is much lower than pass-through models 
due to:

- Interrupt handling associated with I/O transfers
- Packet copying between guest and host memory locations

• Possibly relevant for datacenter integration: with Open vSwitch, the 
packets flowing through the vSwitch can be controlled by Openflow
rules for SDN use cases. This includes adding/removing NVO3 
encapsulations (VxLAN, GRE, etc.)

Virtualised I/O: Open vSwitch (OVS)
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• DPDK is an open-source toolkit for fast packet processing. 

• When OVS is compiled to use DPDK libraries and DPDK NIC 
drivers, the result is a high-performance vSwitch, which is 
referred to as OVS-DPDK (in this document). 

• OVS-DPDK is considerably faster (7x to 10x) than native OVS 
due to the following reasons:

• The OVS-DPDK fast path moves from the openvswitch.ko kernel 
module to a user-space implementation (the dpif-netdev
component of the ovsvswitchd daemon).

• OVS-DPDK communicates with virtual machine vNIC ports (that 
use a VirtIO driver) using user-space vHost drivers (vhostuser).

• Poll-Mode-Driver (PMD) threads of the user space ovs-vswitchd
process send and receive packets over the OVS switch ports.

Virtualised I/O: OVS-DPDK
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• vSwitch with DPDK acceleration:

- A software implementation of an L2/L3 switch runs in the host
- Guests send and receive packets via the vSwitch
- Datapath is implemented entirely in user-space

• A guest vNIC port is logically connected (by the hypervisor) to a port of the 
vSwitch

- The guest attaches a VirtIO driver to the vNIC port
- Host implements the other side of the driver in user-space (vhost-user)

• Throughput performance is significantly higher than native vSwitch model due 
to use of poll-mode drivers (PMD), more advanced CPU instructions, huge 
pages, etc.

- But still lower than pass-through models due to packet copying between guest and host 
memory locations

• Advantages of the native vSwitch model are retained:

- Live migration/vMotion
- SDN control by openflow rules
- NVO3 encapsulations (VxLAN, GRE, etc.)
- Open Virtual Network (OVN) support

Virtualised I/O: DPDK accelerated OVS
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• Single Root I/O Virtualization

• PCI-SIG standard that allows one PCIe device (Physical 
Function/PF) to appear as multiple lightweight PCIe
devices (Virtual Functions/VFs)

• vNIC in guest uses VF driver specific to the physical NIC 
type

• Direct I/O path between NIC and VM

- Limited hypervisor involvement

- VLAN/MAC transparency to be considered on NIC driver side

- Zero copy receive and transmit due to DMA remapping in NIC 
(guest physical address -> host physical address)

- Near-native throughput

Virtualised I/O: SR-IOV
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• Allows a physical PCI device from the host to be assigned 
directly to a guest

- Guest controls the port using its own equivalent of the bare-
metal NIC driver

- The device is automatically detached from the host OS drivers 
when the guest is started and re-attached when the guest shuts 
down (managed mode)

• Direct I/O path between NIC and VM

- No hypervisor involvement
- All frames sent through untouched – fully up to the VM to handle
- Zero copy receive and transmit due to DMA remapping in NIC 

(guest physical address -> host physical address)
- Near-native throughput

• No sharing of physical NIC ports by different VMs

Virtualised I/O: PCI Passthrough
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Hardware vs. Software 
Routers

Applicability
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• Great for control-plane intense tasks

- The control plane of a hardware router is also just some piece of software running on a CPU

- Running protocols and keeping tables is a nice job for a CPU, and hardly hardware-assisted anyway

• Single line-card designs, reasonably low port count

• Examples:

- BGP route reflector – very little data plane required

- CG-NAT appliance – mostly mapping table management, and some header rewriting

- BNG, subscriber management – keeping state tables, QoS to be emulated

- L2TP tunnel termination – mainly header management plus some state keeping

- Large-scale IPsec gateway – encryption can be done in software reasonably well

- DPI – hardware chipsets usually only look at packet headers anyway

- Router simulator for lab use (if it actually behaves like real hardware does...)

Software routers: some very basic rules for applicability
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• Limited throughput and packet processing activated

- Good scenario: Enterprise router - low number of 10G interfaces, full BGP table, a bit of peering, 
otherwise standard routing, little to no QoS, maybe some VPNs in addition

- Questionable: higher (>4) number of physical 40G/100G interfaces

- Unrealistic: trying to build a router/switch with many really high bandwidth ports in software

• Do you need guaranteed performance ?

- For a hardware router, you can get somewhat guaranteed performance values from your vendor

- Performance you can actually achieve with a software router depends a lot on your specific hard-
and software configuration – little to no vendor guarantees for performance possible upfront

- You will only know how well your actual hardware performs with all your actually configured
features once you really try it out on exactly THIS system

- Any change in server hardware or router configuration WILL affect performance again

• Way out of this: buy a fixed combination of server and routing software as applicance

Software routers: some very basic rules for applicability
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• Is your network fully automated already - is compute power a „consumable resource“ ?

- Software routers can be instantly deployed and destroyed „on-demand“

- No special hardware to be bought

- No delivery times from your supplier

- Use your existing automation platform also for routing, like you do for plain compute-VMs

- Your datacenter is also your backbone room in this case

• No chance to get to this level of flexibility with regular hardware routers - software 
routers are WAY more flexible for this scenario

• Cover the possible limited throughput of software routers by more instances in parallel

• „Deploy as you grow“ model - „from pets to cattle“

• If you really need a very big box in one place, you can still add a hardware router there

Software routers: some very basic rules for applicability (cont‘d)
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• Do you need every bit of performance squeezed out ?

- If so, does your free implementation „pull all the available registers“ ?

- Or is it simply already „good enough“ for what you have in mind ?

• Do you feel comfortable with the user interface of your routing software ?

• Do you need SLA-based support ?

- Do you have SLAs towards your own customers that you need to keep ?

- Does „the community“ always (!) react quickly enough for you ?

- If not, can you fix really everything just by yourself quickly enough ?

- Is the time you spend on this also „free“ ?

- What other things of your regular job can‘t you do while you fix routing software bugs ?

- Does your company have someone else with the same skills next to you, just in case...?

• Is your software router for lab use only ?

Software routers: free software or commercial products ?
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Q&A
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