
1 © Nokia 2017

Hardware vs.

Software Routers

Customer Confidential

Oliver Knapp, Consulting Engineering Nokia

DENOG9 - 24.11.2017



2 © Nokia 2017

1. Why software routers at all ?

2. Technology: hardware routers

3. Technology: software routers

4. Applicability

5. Q&A

Agenda



3 © Nokia 2017

Hardware vs. Software 
Routers

Why Software Routers ?



4 © Nokia 2017

• In the beginning, there was only routing „in software“ – matched required/available 
transport link speeds

• Some years later, CPUs simply weren‘t fast enough anymore to „push packets“ 
reasonably

• Hardware routing with special chipsets was thus the only option for service providers

- Quite some rounds of development for routing chipsets over time

- Vendor specific chipsets vs. commercial, off-the-shelf (COTS) chipsets

- Always a trade between price and performance

• This has changed recently: today‘s CPUs are powerful enough again for commonly used 
interface speeds

• „High-enough-speed“ network interface cards are available for x86-based servers

• Not everyone anymore also needs the biggest available interfaces in a router (40/100G ?)

Why Software Routers ?



5 © Nokia 2017

• Hardware routers are special gear, and thus somewhat inflexible in their applicability

• Today‘s hardware routing chipsets might be „too big“ already for standard enterprise
routing (=Internet-routing only, low number of 10G interfaces and some level of BGP)

• Hardware routers do have a bit of cost

• You either need stock, or there might be delivery times

• Can a network operator gain more flexibility and save on costs at the same time by going
software-only ?

Why Software Routers ? (cont‘d)



6 © Nokia 2017

Hardware vs. Software 
Routers

Hardware Routers



7 © Nokia 2017

• One control card, and only one single line card

• Control card: runs protocols, keeps lists, tables, state, etc.

• Line card: does all packet processing - lookups, filtering, queueing, forwarding,...

• All traffic stays local within the single line card once it has passed through the ports 
facing the external world

Hardware router flavours: a very simple, fabric-less design

Control Card

CPU

Line Card

Chipset PP

Mgmt

Control Bus

P1

P2



8 © Nokia 2017

• One control card, and two line cards

• Traffic must have a sufficient bandwidth path between both line cards – basically 100% 
of the front port speed as worst-case scenario

Hardware router flavours: back-to-back line card design

Control Card

CPU

Line Card

Chipset PP

Mgmt
P1

P2

Line Card

Chipset PP

Mgmt
P3

P4

Control Bus

Back-to-back link as 
fabric substitute



9 © Nokia 2017

• One control card, and many line cards

• Traffic must have a sufficient bandwidth path between any two line cards

• You need a lossless, any-to-any cross-connect as your switch fabric

Hardware router flavours: full fabric design

Control Card

CPU

Line Card

Chipset PP

Mgmt

P1

P2

Control Bus

Line Card

Chipset PP

Mgmt
P3

P4

Line Card

Chipset PP

Mgmt

P5

P6

Switch Fabric:
Cross-Connect

(Control bus connections 
to all line cards omitted 
here for simplicity)



10 © Nokia 2017

Hardware vs. Software 
Routers

Software Routers



11 © Nokia 2017

• Take a standard OS, and build some routing software on top of it

- Start with the hardware you have

- Install the OS of your choice

- Create/find suitable routing software that runs on this OS, and does all the protocols you need

- Your OS will automatically provide the data plane for your software router

• Take existing routing software of a hardware router, and port it onto standard hardware

- Start with the software you already have: ideally already well-proven and hardened

- Find ways to make it run on standard hardware instead of special hardware

- See what OS you have to put in between, if applicable

- Find a way to „provide“ the hardware router‘s data plane (i.e. hardware chipset) as well...

From hardware to software: two approaches



12 © Nokia 2017

• Nice, easy, and cheap

• Usually little to no hardware dependencies

• Performance depends on your OS, and it‘s integrated network stack

• Bear in mind your OS might never have been optimized for packet throughput

• With some tweaks, you might be able to improve the situation here

• Is your OS a real-time OS – do you need things to happen at exact intervals (e.g. BFD) ?

• How do you configure this software router – config files and reboot, or well-known CLI ?

• How does it integrate into your NMS/OSS landscape ?

• Is there support for this setup, do you need it, or can you provide it yourself ?

Option one: standard OS and routing software on top



13 © Nokia 2017

• Effort depends on how that routing software was designed originally

- If it‘s x86-based anyway, should be limited effort

- If it‘s originally for other CPU flavours, can it be ported ?

• Have the routing software see your server „as close to the real hardware“ as possible

• Where special hardware/chipset functionality is expected, emulate it

• Make sure there is no „stolen CPU cycles“ and the like (real-time behaviour...)

• Apply whatever tricks are necessary to get maximum throughput

• Use your well-known CLI: same look&feel as regular hardware router

• Supported product: your vendor should be able to help you if required

• There will very likely be a cost with this approach

Option two: port routing software from hardware router



14 © Nokia 2017

• Best possible hardware abstraction: use as a VM on a hypervisor host

• Configure your VM to look as close as possible to what the routing software expects as
underlying hardware - use the hypervisor as a hardware abstraction layer

• Emulate missing hardware in software where required (slow !)

• Have your VM run a different base OS than your hypervisor

• Hypervisor OS and services do not need to be exposed into router data plane (security !)

• However: emulation and abstraction inherently cost performance again...

• Alternative: have the hypervisor „interfere the least possible way“ for critical items

• Especially try to avoid the hypervisor‘s network stack

• But then, you might have a hardware dependency again...

� There is no free lunch here either !

Option two: hardware router OS - virtualize it !



15 © Nokia 2017

• One control card, and only one single line card

• Option one: each of them runs as a separate VM on a common hypervisor

• Option two: have one single, shared VM for both functions

• Control bus needs limited bandwidth only

• All traffic stays local within the single line card VM

Software router virtualized: a very simple, fabric-less design

Control Card 
VM

CPU

Line Card
VM

Chipset
Emulation

Mgmt

Control Bus

P1

P2



16 © Nokia 2017

In reality, multi-line card software routers quickly come to their limits:

• Any line card VM needs to be able to send worst case up to 100% of the front ports 
capacity to another line card VM

• Even in a two line card system, you need the same additional port capacity for the line 
card interconnect as you have on the front ports

• But then, why don‘t you use just ONE line card VM, and ALL available ports „front only“ ?

• „More than two line card systems“ scale even worse in software:

- You need to emulate the cross-bar switch fabric

- Either by single point-to-point links � expensive, doesn‘t scale (see above)

- Or by a real hardware switch as a fabric emulation

- But then again, didn‘t you originally want a software router WITHOUT any special hardware...?

Software router virtualized: more than one line card VM ?



17 © Nokia 2017

• Remember there was a reason for creating special routing hardware:

- Highly optimized, built-for-purpose chipsets

- Special memory types (e.g. TCAM) exist in hardware for a reason – emulation is slow

- Hardware processing is usually faster than software processing

- Hardware processing is (should be...) load-independent

- Assume that where things can be parallelized in hardware, they likely already are

• On a software router, EVERYTHING you do with a packet needs CPU cycles

• The more processing you do on a packet, the more CPU power you need (access lists, 
Multicast replication,...)

• CPU load goes up with overall throughput

Software routers: how far can you go ?



18 © Nokia 2017

• You need to get packets in and out of your box as well before you can do anything else

• Your server host only has a limited number of PCI slots

• The NICs you can buy have a limited number of ports

• This puts an upper limit to the number of physical ports you can attach to your software 
router

• If you use external „fan-out switches“, you have special hardware again...

• How fast can you get packets in and out of your line card VM, using all possible tricks ?

Software routers: how far can you go ? (cont‘d)



19 © Nokia 2017

• Native device drivers in the guest OS

• VMM emulates physical hardware

• VMM needs to intercept all traffic and convert it 
for the physical hardware

• Very slow operation

• Hardware can be shared between VMs

• Doesn’t require the guest to have knowledge of 
the fact that it’s virtualised

Virtualised I/O: emulated NICs

VM1

VMM

NIC

Unmodified 
Drivers

VM2

Unmodified 
Drivers

Unmodified Drivers

Emulated Hardware

Hardware



20 © Nokia 2017

• Para-Virtualised I/O driver

- The VM is aware of the fact that it is running in an 
emulated/virtualised environment

• Requires modifications to the drivers in both 
the guest and the host

• Removes the requirement for the hypervisor to 
have to emulate the hardware

• Guest OS must load the VirtIO driver 

• Provides significantly better performance 
than emulated hardware (HVM)

Virtualised I/O: VirtIO NICs

VM1

VMM

NIC

Modified

Drivers

VM2

Modified

Drivers

Modified Drivers

Hardware



21 © Nokia 2017

• Linux Bridging

- Most simple option, available everywhere by default

- Slowest option of all

• Openvswitch (OVS)

- Flexible, programmable

• OVS with DPDK

- High throughput with flexibility

• SR-IOV

- Virtual Functions created in hardware to share ports

- Highest throughput with some flexibility

• PCI-Passthrough

- Highest throughput with most flexibility on the 
virtual router side, but almost no virtualization stack 
flexibility on the host side

Software routers: virtualised I/O options

Server 1Server 1

VSR 
Integrated

KVM

VSR 
Integrated

VSR 
Integrated

Bridge / OVS

NIC

Port

VF VF

DPDK-OVS

Port Port Port



22 © Nokia 2017

• Standard service available within Linux

• Works within a single physical machine

• The bridge appears like any other Linux 
Interface

• Multiple virtual and physical interfaces 
can be connected to it

• Commonly used for the control-
interconnects on the VSR within the same 
physical machine or to share interfaces 
where performance is less important

Virtualised I/O: Linux bridging

VM1 (VSR)

VMM

NIC

MGMT Linux Bridge

V0 V1

VM2 (VSR)

V2 V0 V1 V2

CTRL Linux Bridge

P0 P2P1



23 © Nokia 2017

• If no intelligence provided by the NIC a 
software switch is required in the VMM (VM 
Manager)

• vSwitch examines each packet and identifies 
the destination based on the mac address

• vSwitch then directs the packet to the VM

• Inefficient as the hypervisor needs to read, 
understand and deal with each packet

• Ideally: a single CPU core assigned to deal 
with the vSwitch

• Interrupts fired for: Packet arriving on NIC, 
packet being handled by vSwitch, VM dealing 
with packet

Virtualised I/O: vSwitch

NIC

VMM/Hypervisor

VM1 VM3VM2

PHYSICAL PORT

1232

1

2

3

2

1 2

2

3

CPU CPU CPU

vSwitch CPU



24 © Nokia 2017

• Hypervisor connects guest vNIC port to a port of the vSwitch

- The guest uses a virtualization driver (VirtIO, E1000, VMXNET) for the vNIC
port

- Host implements the other side of the driver in user-space or kernel

• Throughput performance is much lower than pass-through models 
due to:

- Interrupt handling associated with I/O transfers
- Packet copying between guest and host memory locations

• Possibly relevant for datacenter integration: with Open vSwitch, the 
packets flowing through the vSwitch can be controlled by Openflow
rules for SDN use cases. This includes adding/removing NVO3 
encapsulations (VxLAN, GRE, etc.)

Virtualised I/O: Open vSwitch (OVS)

HOST

NIC
PF PF

VSR IOM VM

NIC

WORKER

VirtIO driver

SCHEDUL
ER

Kernel
Vhost-net

openvswitch.ko

Userspace

ovs-vswitchd

TAP

VirtIO driver

Vhost-net

TAP



25 © Nokia 2017

• DPDK is an open-source toolkit for fast packet processing. 

• When OVS is compiled to use DPDK libraries and DPDK NIC 
drivers, the result is a high-performance vSwitch, which is 
referred to as OVS-DPDK (in this document). 

• OVS-DPDK is considerably faster (7x to 10x) than native OVS 
due to the following reasons:

• The OVS-DPDK fast path moves from the openvswitch.ko kernel 
module to a user-space implementation (the dpif-netdev
component of the ovsvswitchd daemon).

• OVS-DPDK communicates with virtual machine vNIC ports (that 
use a VirtIO driver) using user-space vHost drivers (vhostuser).

• Poll-Mode-Driver (PMD) threads of the user space ovs-vswitchd
process send and receive packets over the OVS switch ports.

Virtualised I/O: OVS-DPDK



26 © Nokia 2017

• vSwitch with DPDK acceleration:

- A software implementation of an L2/L3 switch runs in the host
- Guests send and receive packets via the vSwitch
- Datapath is implemented entirely in user-space

• A guest vNIC port is logically connected (by the hypervisor) to a port of the 
vSwitch

- The guest attaches a VirtIO driver to the vNIC port
- Host implements the other side of the driver in user-space (vhost-user)

• Throughput performance is significantly higher than native vSwitch model due 
to use of poll-mode drivers (PMD), more advanced CPU instructions, huge 
pages, etc.

- But still lower than pass-through models due to packet copying between guest and host 
memory locations

• Advantages of the native vSwitch model are retained:

- Live migration/vMotion
- SDN control by openflow rules
- NVO3 encapsulations (VxLAN, GRE, etc.)
- Open Virtual Network (OVN) support

Virtualised I/O: DPDK accelerated OVS

HOST

NIC
Port Port

VSR IOM VM

NIC

WORKER

VirtIO driver

SCHEDUL
ER

Kernel

openvswitch.ko

Userspace

ovs-vswitchd

VirtIO driver

PMD thread PMD thread



27 © Nokia 2017

• Single Root I/O Virtualization

• PCI-SIG standard that allows one PCIe device (Physical 
Function/PF) to appear as multiple lightweight PCIe
devices (Virtual Functions/VFs)

• vNIC in guest uses VF driver specific to the physical NIC 
type

• Direct I/O path between NIC and VM

- Limited hypervisor involvement

- VLAN/MAC transparency to be considered on NIC driver side

- Zero copy receive and transmit due to DMA remapping in NIC 
(guest physical address -> host physical address)

- Near-native throughput

Virtualised I/O: SR-IOV

VSR IOM VM

NIC

WORKER

HOST

NIC

PF

VF

VF driver VF driver

VF

PF

VF VF

SCHEDUL
ER



28 © Nokia 2017

• Allows a physical PCI device from the host to be assigned 
directly to a guest

- Guest controls the port using its own equivalent of the bare-
metal NIC driver

- The device is automatically detached from the host OS drivers 
when the guest is started and re-attached when the guest shuts 
down (managed mode)

• Direct I/O path between NIC and VM

- No hypervisor involvement
- All frames sent through untouched – fully up to the VM to handle
- Zero copy receive and transmit due to DMA remapping in NIC 

(guest physical address -> host physical address)
- Near-native throughput

• No sharing of physical NIC ports by different VMs

Virtualised I/O: PCI Passthrough

HOST

NIC
PF PF

VSR IOM VM

NIC

WORKER

PF driver PF driver

SCHEDUL
ER



29 © Nokia 2017

Hardware vs. Software 
Routers

Applicability



30 © Nokia 2017

• Great for control-plane intense tasks

- The control plane of a hardware router is also just some piece of software running on a CPU

- Running protocols and keeping tables is a nice job for a CPU, and hardly hardware-assisted anyway

• Single line-card designs, reasonably low port count

• Examples:

- BGP route reflector – very little data plane required

- CG-NAT appliance – mostly mapping table management, and some header rewriting

- BNG, subscriber management – keeping state tables, QoS to be emulated

- L2TP tunnel termination – mainly header management plus some state keeping

- Large-scale IPsec gateway – encryption can be done in software reasonably well

- DPI – hardware chipsets usually only look at packet headers anyway

- Router simulator for lab use (if it actually behaves like real hardware does...)

Software routers: some very basic rules for applicability



31 © Nokia 2017

• Limited throughput and packet processing activated

- Good scenario: Enterprise router - low number of 10G interfaces, full BGP table, a bit of peering, 
otherwise standard routing, little to no QoS, maybe some VPNs in addition

- Questionable: higher (>4) number of physical 40G/100G interfaces

- Unrealistic: trying to build a router/switch with many really high bandwidth ports in software

• Do you need guaranteed performance ?

- For a hardware router, you can get somewhat guaranteed performance values from your vendor

- Performance you can actually achieve with a software router depends a lot on your specific hard-
and software configuration – little to no vendor guarantees for performance possible upfront

- You will only know how well your actual hardware performs with all your actually configured
features once you really try it out on exactly THIS system

- Any change in server hardware or router configuration WILL affect performance again

• Way out of this: buy a fixed combination of server and routing software as applicance

Software routers: some very basic rules for applicability



32 © Nokia 2017

• Is your network fully automated already - is compute power a „consumable resource“ ?

- Software routers can be instantly deployed and destroyed „on-demand“

- No special hardware to be bought

- No delivery times from your supplier

- Use your existing automation platform also for routing, like you do for plain compute-VMs

- Your datacenter is also your backbone room in this case

• No chance to get to this level of flexibility with regular hardware routers - software 
routers are WAY more flexible for this scenario

• Cover the possible limited throughput of software routers by more instances in parallel

• „Deploy as you grow“ model - „from pets to cattle“

• If you really need a very big box in one place, you can still add a hardware router there

Software routers: some very basic rules for applicability (cont‘d)



33 © Nokia 2017

• Do you need every bit of performance squeezed out ?

- If so, does your free implementation „pull all the available registers“ ?

- Or is it simply already „good enough“ for what you have in mind ?

• Do you feel comfortable with the user interface of your routing software ?

• Do you need SLA-based support ?

- Do you have SLAs towards your own customers that you need to keep ?

- Does „the community“ always (!) react quickly enough for you ?

- If not, can you fix really everything just by yourself quickly enough ?

- Is the time you spend on this also „free“ ?

- What other things of your regular job can‘t you do while you fix routing software bugs ?

- Does your company have someone else with the same skills next to you, just in case...?

• Is your software router for lab use only ?

Software routers: free software or commercial products ?



34 © Nokia 2017

Q&A



Blue on blue



White on thite



37 © Nokia 2017

Copyright and confidentiality

The contents of this document are proprietary 
and confidential property of Nokia. This document 
is provided subject to confidentiality obligations 
of the applicable agreement(s). 

This document is intended for use of Nokia’s 
customers and collaborators only for the purpose 
for which this document is submitted by Nokia. No 
part of this document may be reproduced or 
made available to the public or to any third party 
in any form or means without the prior written 
permission of Nokia. This document is to be used 
by properly trained professional personnel. Any 
use of the contents in this document is limited 
strictly to the use(s) specifically created in the 
applicable agreement(s) under which the 
document is submitted. The user of this 
document may voluntarily provide suggestions, 
comments or other feedback to Nokia in respect 
of the contents of this document ("Feedback"). 

Such Feedback may be used in Nokia products 
and related specifications or other 
documentation. Accordingly, if the user of this 
document gives Nokia Feedback on the contents 
of this document, Nokia may freely use, disclose, 
reproduce, license, distribute and otherwise 
commercialize the feedback in any Nokia product, 
technology, service, specification or other 
documentation. 

Nokia operates a policy of ongoing development. 
Nokia reserves the right to make changes and 
improvements to any of the products and/or 
services described in this document or withdraw 
this document at any time without prior notice. 

The contents of this document are provided "as 
is". Except as required by applicable law, no 
warranties of any kind, either express or implied, 
including, but not limited to, the implied 

warranties of merchantability and fitness for a 
particular purpose, are made in relation to the 
accuracy, reliability or contents of this document. 
NOKIA SHALL NOT BE RESPONSIBLE IN ANY EVENT 
FOR ERRORS IN THIS DOCUMENT or for 
any loss of data or income or any special, 
incidental, consequential, indirect or direct 
damages howsoever caused, that might arise 
from the use of this document or any contents of 
this document. 

This document and the product(s) it describes
are protected by copyright according to the
applicable laws. 

Nokia is a registered trademark of Nokia 
Corporation. Other product and company names 
mentioned herein may be trademarks or trade 
names of their respective owners.


